função geratriz - significado y definición. Qué es função geratriz
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es função geratriz - definición

Função geratriz

Função geradora         
Em matemática, uma função geradora ou função geratriz é uma forma de codificar uma sequência infinita de números (a_n) ao tratá-los como os coeficientes de uma série de potências formal. Essa série é denominada a função geradora da sequência.
Função (matemática)         
  • Esboço do gráfico de uma função arbitrária de uma variável com representação do par ordenado <math display="inline">(a,f(a)).</math>
RELAÇÃO BINÁRIA EM MATEMÁTICA, QUE É TOTAL À ESQUERDA E TEM UNICIDADE À DIREITA
Função matemática; Funções matemáticas; F(x); Função (matematica); Funcao (matematica)
thumb|Uma função que associa cada uma das formas coloridas à sua cor.
Função sobrejectiva         
FUNÇÃO QUE ASSUME TODOS OS VALORES DO SEU CONTRADOMÍNIO
Sobrejectiva; Função sobrejetiva; Função sobrejetora; Sobrejetora; Sobrejetiva; Sobrejetivo; Sobrejeção; Sobrejecção
Em matemática, uma função f de um conjunto X para um conjunto Y é sobrejetiva (ou sobrejectiva ou sobrejetora), se para todo elemento y no contradomínio Y de f houver pelo menos um elemento x no domínio X de f tal que f (x) = y. Ou seja, quando o conjunto imagem coincide com o contradomínio da função.

Wikipedia

Função geradora

Em matemática, uma função geradora ou função geratriz é uma forma de codificar uma sequência infinita de números ( a n {\displaystyle a_{n}} ) ao tratá-los como os coeficientes de uma série de potências formal. Essa série é denominada a função geradora da sequência. Ao contrário de uma série normal, a série de potências formal não precisa convergir: na verdade, a função geradora não é realmente tratada como uma função, e a "variável" é considerada indeterminada. Funções geradoras foram primeiramente introduzidas por Abraham de Moivre em 1730, de maneira a tentar resolver o problema de recorrência geral linear.É possível generalizar para séries de potências formais em mais de um indeterminado, para codificar informação sobre infinitas listas de números multidimensionais.

Existem vários tipos de funções geradoras, incluindo funções geradoras ordinárias, funções geradoras exponenciais, séries de Lambert, séries de Bell, séries de Fourier, séries de Eisenstein e séries de Dirichlet; das quais existem muitos exemplos. Cada sucessão tem uma função geradora de certo tipo. Este tipo de função geradora que é apropriada num contexto dado depende da natureza da sucessão e dos detalhes do problema analisado.

As funções geradoras são expressões fechadas num argumento formal x. Às vezes, uma função geradora é avaliada num valor específico x=a pelo que se deve ter em conta que as funções geradoras são series formais, que não se considera nem se analisa o problema da convergência para todos os valores de x.

Por isto mesmo é importante observar que as funções geradoras não são realmente funções no sentido usual de ser uma relação entre dois conjuntos, ou seja, entre um domínio e um contradomínio. O nome é unicamente o resultado do desenvolvimento histórico de seu estudo.